Rule Extraction Algorithm for Deep Neural Networks: A Review

نویسنده

  • Tameru Hailesilassie
چکیده

Despite the highest classification accuracy in wide varieties of application areas, artificial neural network has one disadvantage. The way this Network comes to a decision is not easily comprehensible. The lack of explanation ability reduces the acceptability of neural network in data mining and decision system. This drawback is the reason why researchers have proposed many rule extraction algorithms to solve the problem. Recently, Deep Neural Network (DNN) is achieving a profound result over the standard neural network for classification and recognition problems. It is a hot machine learning area proven both useful and innovative. This paper has thoroughly reviewed various rule extraction algorithms, considering the classification scheme: decompositional, pedagogical, and eclectics. It also presents the evaluation of these algorithms based on the neural network structure with which the algorithm is intended to work. The main contribution of this review is to show that there is a limited study of rule extraction algorithm from DNN. KeywordsArtificial neural network; Deep neural network; Rule extraction; Decompositional; Pedagogical; Eclectic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Knowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring

Phytoplankton biomass within the Saginaw Bay ecosystem (Lake Huron, Michigan, USA) was characterized as a function of select physical/chemical indicators. The complexity and variability of ecological systems typically make it difficult to model the influences of anthropogenic stressors and/or natural disturbances. Here, Artificial Neural Networks (ANNs) were developed to model chlorophyll a con...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1610.05267  شماره 

صفحات  -

تاریخ انتشار 2016